参考博文
ReentrantReadWriteLock总体设计
public class ReentrantReadWriteLock
implements ReadWriteLock, java.io.Serializable {
/** Inner class providing readlock */
private final ReentrantReadWriteLock.ReadLock readerLock;
/** Inner class providing writelock */
private final ReentrantReadWriteLock.WriteLock writerLock;
/** Performs all synchronization mechanics */
final Sync sync;
public ReentrantReadWriteLock() {
this(false);
}
public ReentrantReadWriteLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
readerLock = new ReadLock(this);
writerLock = new WriteLock(this);
}
public ReentrantReadWriteLock.WriteLock writeLock() { return writerLock; }
public ReentrantReadWriteLock.ReadLock readLock() { return readerLock; }
...
}
内部类ReadLock设计
读锁:共享锁
public static class ReadLock implements Lock, java.io.Serializable {
protected ReadLock(ReentrantReadWriteLock lock) {
sync = lock.sync;
}
public void lock() {
sync.acquireShared(1);
}
// 尝试增加读锁
public boolean tryLock() {
return sync.tryReadLock();
}
public void unlock() {
sync.releaseShared(1);
}
...
}
内部类ReadLock外部实现
尝试获取读锁
protected final int tryAcquireShared(int unused) {
/*
* Walkthrough:
* 1. If write lock held by another thread, fail.
* 2. Otherwise, this thread is eligible for
* lock wrt state, so ask if it should block
* because of queue policy. If not, try
* to grant by CASing state and updating count.
* Note that step does not check for reentrant
* acquires, which is postponed to full version
* to avoid having to check hold count in
* the more typical non-reentrant case.
* 3. If step 2 fails either because thread
* apparently not eligible or CAS fails or count
* saturated, chain to version with full retry loop.
*/
Thread current = Thread.currentThread();
int c = getState();
// 写锁的重入数目不为0,当前线程又不是写锁,返回fail
if (exclusiveCount(c) != 0 &&
getExclusiveOwnerThread() != current)
return -1;
// 写锁的数目为0,尝试加锁
int r = sharedCount(c);
if (!readerShouldBlock() &&
r < MAX_COUNT &&
// CAS加锁
compareAndSetState(c, c + SHARED_UNIT)) {
// 读锁的数目为0,第一次加锁,该锁的可重入数目为1
if (r == 0) {
firstReader = current;
firstReaderHoldCount = 1;
// 读锁的数目不为0,当前线程与第一个读线程是同一线程
// 增加首个读线程的可重入次数
} else if (firstReader == current) {
firstReaderHoldCount++;
// 读锁数目为0,当前线程与第一个读线程不是是同一线程
} else {
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != getThreadId(current))
cachedHoldCounter = rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
// 增加其他读线程rh的可重入次数
rh.count++;
}
return 1;
}
// 循环尝试加锁操作,直至加锁成功
return fullTryAcquireShared(current);
}
尝试释放读锁
protected final boolean tryReleaseShared(int unused) {
Thread current = Thread.currentThread();
// 释放首线程的锁
if (firstReader == current) {
// assert firstReaderHoldCount > 0;
if (firstReaderHoldCount == 1)
firstReader = null;
else
firstReaderHoldCount--;
// 释放其他线程的锁
} else {
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != getThreadId(current))
rh = readHolds.get();
int count = rh.count;
if (count <= 1) {
readHolds.remove();
if (count <= 0)
throw unmatchedUnlockException();
}
--rh.count;
}
// CAS循环更新state值
for (;;) {
int c = getState();
int nextc = c - SHARED_UNIT;
if (compareAndSetState(c, nextc))
// Releasing the read lock has no effect on readers,
// but it may allow waiting writers to proceed if
// both read and write locks are now free.
return nextc == 0;
}
}
// 读锁的使用技巧---ThreadLocal
static final class HoldCounter {
int count = 0;
// Use id, not reference, to avoid garbage retention
final long tid = getThreadId(Thread.currentThread());
}
static final class ThreadLocalHoldCounter
extends ThreadLocal<HoldCounter> {
public HoldCounter initialValue() {
return new HoldCounter();
}
}
private transient ThreadLocalHoldCounter readHolds;
private transient HoldCounter cachedHoldCounter;
内部类WriteLock设计
写锁:排它锁
public static class WriteLock implements Lock, java.io.Serializable {
private final Sync sync;
protected WriteLock(ReentrantReadWriteLock lock) {
sync = lock.sync;
}
public void lock() {
sync.acquire(1);
}
public boolean tryLock( ) {
return sync.tryWriteLock();
}
public void unlock() {
sync.release(1);
}
...
}
内部类WriteLock外部实现
尝试获取写锁
protected final boolean tryAcquire(int acquires) {
/*
* Walkthrough:
* 1. If read count nonzero or write count nonzero
* and owner is a different thread, fail.
* 2. If count would saturate, fail. (This can only
* happen if count is already nonzero.)
* 3. Otherwise, this thread is eligible for lock if
* it is either a reentrant acquire or
* queue policy allows it. If so, update state
* and set owner.
*/
Thread current = Thread.currentThread();
int c = getState();
int w = exclusiveCount(c);
if (c != 0) {
// (Note: if c != 0 and w == 0
// then shared count != 0)
// 如果读锁不为0写锁为0
// 或者
// 如果读锁为0写锁不为0且当前线程不是写线程
if (w == 0 || current != getExclusiveOwnerThread())
return false;
// 超出最大可获取写锁的可重入数量
if (w + exclusiveCount(acquires) > MAX_COUNT)
throw new Error("Maximum lock count exceeded");
// Reentrant acquire
// 更新锁状态
setState(c + acquires);
return true;
}
if (writerShouldBlock() ||
!compareAndSetState(c, c + acquires))
return false;
// 设置写线程,排它锁
setExclusiveOwnerThread(current);
return true;
}
尝试释放写锁
protected final boolean tryRelease(int releases) {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
int nextc = getState() - releases;
boolean free = exclusiveCount(nextc) == 0;
// 如果写锁可重入数目为0,释放锁
if (free)
setExclusiveOwnerThread(null);
setState(nextc);
return free;
}
State状态说明
static final int SHARED_SHIFT = 16;
static final int SHARED_UNIT = (1 << SHARED_SHIFT);
static final int MAX_COUNT = (1 << SHARED_SHIFT) - 1;
static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;
/** Returns the number of shared holds represented in count */
// 取高16位(读状态)
static int sharedCount(int c)
{ return c >>> SHARED_SHIFT; }
/** Returns the number of exclusive holds represented in count */
// 取低16位(写状态)
static int exclusiveCount(int c)
{ return c & EXCLUSIVE_MASK; }